Involvement of ST6Gal I-mediated α2,6 sialylation in myoblast proliferation and differentiation

11Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Myogenesis is a physiological process which involves the proliferation of myoblasts and their differentiation into multinucleated myotubes, which constitute the future muscle fibers. Commitment of myoblasts to differentiation is regulated by the balance between the myogenic factors Pax7 and MyoD. The formation of myotubes requires the presence of glycans, especially N-glycans, on the cell surface. We examined here the involvement of α2,6 sialylation during murine myoblastic C2C12 cell differentiation by generating a st6gal1-knockdown C2C12 cell line; these cells exhibit reduced proliferative potential and precocious differentiation due to the low expression of Pax7. The earlier fusion of st6gal1-knockdown cells leads to a high fusion index and a drop in reserve cells (Pax7+/MyoD−). In st6gal1-knockdown cells, the Notch pathway is inactivated; consequently, Pax7 expression is virtually abolished, leading to impairment of the proliferation rate. All these results indicate that the decrease in α2,6 sialylation of N-glycans favors the differentiation of most cells and provokes a significant loss of reserve cells.

Cite

CITATION STYLE

APA

Vergé, C., Bouchatal, A., Chirat, F., Guérardel, Y., Maftah, A., & Petit, J. M. (2020). Involvement of ST6Gal I-mediated α2,6 sialylation in myoblast proliferation and differentiation. FEBS Open Bio, 10(1), 56–69. https://doi.org/10.1002/2211-5463.12745

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free