Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II) with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES). NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.
CITATION STYLE
Zhang, C., & Ma, X. (2015). NSGA-II algorithm with a local search strategy for multiobjective optimal design of dry-type air-core reactor. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/839035
Mendeley helps you to discover research relevant for your work.