Nuclear aggresomes induced by proteins containing an expanded polyglutamine (polyQ) tract are pathologic hallmarks of certain neurodegenerative diseases. Some GFP fusion proteins lacking a polyQ tract may also induce nuclear aggresomes in cultured cells. Here we identify single missense mutations within the basic DNA recognition region of Bam HI Z E B virus replication activator (ZEBRA), an Epstein-Barr virus (EBV)-encoded basic zipper protein without a polyQ tract, that efficiently induced the formation of nuclear aggresomes. Wild-type (WT) ZEBRA was diffusely distributed within the nucleus. Four non-DNA-binding mutants, Z(R179E), Z(R183E), Z(R190E), and Z(K178D) localized to the periphery of large intranuclear spheres, to discrete nuclear aggregates, and to the cytoplasm. Other non-DNA-binding mutants, Z(N182K), Z(N182E), and Z(S186E), did not exhibit this phenotype. The interior of the spheres contained promyelocytic leukemia and HSP70 proteins. ZEBRA mutants directly induced the nuclear aggresome pathway in cells with and without EBV. Specific cellular proteins (SC35 and HDAC6) and viral proteins (WT ZEBRA, Rta, and BMLF1) but not other cellular or viral proteins were recruited to nuclear aggresomes. Co-transfection of WT ZEBRA with aggresome-inducing mutants Z(R183E) and Z(R179E) inhibited late lytic viral protein expression and lytic viral DNA amplification. This is the first reported instance in which nuclear aggresomes are induced by single missense mutations in a viral or cellular protein. We discuss conformational changes in the mutant viral AP-1 proteins that may lead to formation of nuclear aggresomes. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Park, R., Wang’ondu, R., Heston, L., Shedd, D., & Miller, G. (2011). Efficient induction of nuclear aggresomes by specific single missense mutations in the DNA-binding domain of a viral AP-1 homolog. Journal of Biological Chemistry, 286(11), 9748–9762. https://doi.org/10.1074/jbc.M110.198325
Mendeley helps you to discover research relevant for your work.