Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation- independent mannose 6-phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances ~50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB- mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.
CITATION STYLE
Press, B., Feng, Y., Hoflack, B., & Wandinger-Ness, A. (1998). Mutant rab7 causes the accumulation of cathepsin D and cation- independent mannose 6-phosphate receptor in an early endocytic compartment. Journal of Cell Biology, 140(5), 1075–1089. https://doi.org/10.1083/jcb.140.5.1075
Mendeley helps you to discover research relevant for your work.