Additive manufacturing: A trans-disciplinary experience

10Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Additive Manufacturing (AM) has intrigued the minds of many. The artist can create truly unique designs. The production engineer has a completely new way of making parts. The warfighter can repair or replace equipment on the battlefield. Moreover, any curious person can build trinket and toys at home. As such, the systems challenges facing AM users are not restricted to experts from one domain or one discipline, but are challenges faced by all. This chapter serves to review these transdisciplinary challenges and to discuss opportunities associated with (AM) technologies. The chapter also explores the unique systems challenges created by the widespread adoption of those technologies. As products have become increasingly complex, traditional manufacturing has progressed from an intradisciplinary activity to a multidisciplinary activity to an interdisciplinary activity. The emergence of additive manufacturing is moving manufacturing quickly to a trans-disciplinary activity. Furthermore, the availability of inexpensive AM machines has spawned the maker movement, which has empowered the general public with the ability to design and manufacture a tremendous variety of products. In other words, the public can not only interact with, but also embrace, these various disciplines. As a result, AM is widely considered to be a disruptive manufacturing technology. More importantly, AM is transforming how we understand the manufacture of a product. Traditional manufacturing has long permitted supply chain partners to operate in isolation: with designers, material suppliers, and manufactures often able to function independently towards the singular goal of creating a product. In AM, however, design, materials, and processes can no longer be segregated. Systems approaches are inherently necessary for the successful creation of a part. The manufacture of design features is no longer restricted by parametric representations. Material properties can be digitally manufactured. To take advantage of these advanced manufacturing options, large amounts of data must be captured, stored, and systematically deployed. The users of this data may range from engineers, to warfighters, to the general public. For this reason, careful consideration must be put into how information is structured, shared, accessed. This chapter will review the detailed knowledge required from different disciplines to successfully manufacture a product using AM technologies. We will discuss emerging opportunities, from the manufacture of assemblies to the printing of electronics. We will explore the trans-disciplinary nature of additive manufacturing. We discuss how additive technologies have transcended the reach of traditional manufacturing and brought design and manufacture directly to the consumer. Finally, we will explore information barriers in additive manufacturing, and discuss how systems applications can help open new doors.

Cite

CITATION STYLE

APA

Witherell, P., Lu, Y., & Jones, A. (2016). Additive manufacturing: A trans-disciplinary experience. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (pp. 145–175). Springer International Publishing. https://doi.org/10.1007/978-3-319-38756-7_6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free