The joint capsule of the knee joint is attached to the edges of various articular surfaces and is thin and loose. Therefore, ligament reinforcement is needed to protect the knee joint and increase the stability of the joint. It plays a vital role in human activities. In this paper, a 3D-CT three-dimensional reconstruction method is used to reconstruct the ACL natural femoral imprint and double-bone tract. The relative positional relationship between the two center points is compared, and the law is summarized to guide the improvement of ACL anatomic double-beam reconstruction under arthroscopy. The 3D reconstruction results suggest that the bone layer in the anterior medial portion is the thickest, forming a peak, and the thickness of the bone layer in the posterior medial portion gradually decreases in a stepwise manner. The entire bone tissue in the anterior medial portion and posterior medial portion is integrated into one body. The tissues are connected as a whole, and the thickness is relatively uniform. The two parts of the bone tissues are not connected. The CF tissue was inserted into the bone tissue in a zigzag pattern. The changes of CF tissues in the anterior medial and posteromedial CF tissues were similar, and they were distributed stepwise from the inside to the outside. According to the bone and CF spatial structure and changing rules, ACL is divided into medial and lateral beams. According to this study, it can be summarized that (1) 3D reconstruction can clearly reconstruct the natural footprint of ACL femoral stops and postoperative osseous position and (2) 3D reconstruction can be used to evaluate the position of osseous postoperative ACL anatomic double-beam reconstruction. Arthroscopy double-beam reconstruction of ACL is instructive.
CITATION STYLE
Zhang, S. (2020). Diagnosis and Exercise Rehabilitation of Knee Joint Anterior Cruciate Ligament Injury Based on 3D-CT Reconstruction. Complexity. Hindawi Limited. https://doi.org/10.1155/2020/3690124
Mendeley helps you to discover research relevant for your work.