Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography

45Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Purpose To assess depth-dependent corneal displacements in live normal subjects using optical coherence elastography (OCE). Methods A corneal elastography method based on swept-source optical coherence tomography (OCT) was implemented in a clinical prototype. Low amplitude corneal deformation was produced during OCT imaging with a linear actuator-driven lens coupled to force transducers. A cross-correlation algorithm was applied to track frame-by-frame speckle displacement across horizontal meridian scans. Intra-measurement force and displacement data series were plotted against each other to produce local axial stiffness approximations, k, defined by the slope of a linear fit to the force/displacement data (ignoring non-axial contributions from corneal bending). Elastographic maps displaying local k values across the cornea were generated, and the ratio of mean axial stiffness approximations for adjacent anterior and posterior stromal regions, ka/kp, was calculated. Intraclass correlation coefficients (ICC) were used to estimate repeatability. Results Seventeen eyes (ten subjects) were included in this prospective first-in-humans translational study. The ICC was 0.84. Graphs of force vs. displacement demonstrated that, for simultaneously acquired measurements involving the same applied force, anterior stromal displacements were lower (suggesting stiffer behavior) than posterior stromal displacements. Mean ka was 0.016±0.004 g/mm and mean kp was 0.014±0.004 g/mm, giving a mean ka/kp ratio of 1.123±0.062. Conclusion OCE is a clinically feasible, non-invasive corneal biomechanical characterization method capable of resolving depth-dependent differences in corneal deformation behavior. The anterior stroma demonstrated responses consistent with stiffer properties in compression than the posterior stroma, but to a degree that varied across normal eyes. The clinical capability to measure these differences has implications for assessing the biomechanical impact of corneal refractive surgeries and for ectasia risk screening applications.

Cite

CITATION STYLE

APA

De Stefano, V. S., Ford, M. R., Seven, I., & Dupps, W. J. (2019). Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS ONE, 13(12). https://doi.org/10.1371/journal.pone.0209480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free