More and more synthetic aperture radar (SAR) satellites in orbit provide abundant data for remote sensing applications. In August 2016, China launched a new Earth observation SAR satellite, Gaofen-3 (GF-3). In this paper, we utilize a small stack of GF-3 differential interferograms to map land subsidence in Beijing (China) using the time-series SAR interferometry (InSAR) technique. The small stack of differential interferograms is generated with 5 GF-3 SAR images from March 2017 to January 2018. Orbit errors are carefully addressed and removed during differential InSAR (DInSAR) processing. Truncated singular-value decomposition (TSVD) is applied to strengthen the robustness of deformation rate estimation. To validate the results of GF-3 data, an additional deformation measurement using 26 Sentinel-1B images from March 2017 to February 2018 is carried out using the persistent scatterer interferometry (PSI) technique. By implementing a cross-comparison, we find that the retrieved results from GF-3 images and Sentinel-1 images are spatially consistent. The standard deviation of vertical deformation rate differences between two data stacks is 11.24 mm/y in the study area. The results shown in this paper demonstrate the reasonable potential of GF-3 SAR images to monitor land subsidence.
CITATION STYLE
Wang, J., Yu, W., Deng, Y., Wang, R., Wang, Y., Zhang, H., & Zheng, M. (2019). Demonstration of time-series InSAR processing in Beijing using a small stack of Gaofen-3 differential interferograms. Journal of Sensors, 2019. https://doi.org/10.1155/2019/4204580
Mendeley helps you to discover research relevant for your work.