Cell entry of hepatitis C virus (HCV) is strikingly linked to lipoproteins and their receptors. Particularly, high density lipoprotein (HDL) enhances infectivity of HCV by involving the lipid-transfer function of the scavenger receptor BI, a receptor for both HDL and HCV. Here, we demonstrate that apoC-I, an exchangeable apolipoprotein that predominantly resides in HDL, specifically enhances HCVcc and HCVpp infectivity and increases the fusion rates between viral and target membranes via a direct interaction with the HCV surface. We identify the hypervariable region 1, located at theNterminus of the HCV E2 glycoprotein, as an essential viral component that modulates apoC-I-mediated enhancement of HCV fusion properties. The affinity of apoC-I for the HCV membrane may predispose it for fusion with a target membrane via alterations of its outer phospholipid layer. Conversely, we found that excess apoC-I provided as lipoprotein-free protein induces the disruption of the HCV membrane and subsequent loss of infectivity. Furthermore, our data indicate that HDL neither interacts nor spontaneously exchanges apoC-I with HCV virions. Because apoC-I is not present in serum as a lipoprotein-free form, our results suggest that HDL-embedded apoC-I could be released from the lipoprotein particle through a fine-tuned mechanism regulated via a triple interplay between hypervariable region 1, HDL, and scavenger receptor BI, resulting in optimal apoC-I recruitment on the viral membrane. These results provide the first description of a host serum factor helping the fusion process of an enveloped virus. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Dreux, M., Boson, B., Ricard-Blum, S., Molle, J., Lavillette, D., Bartosch, B., … Cosset, F. L. (2007). The exchangeable apolipoprotein apoC-I promotes membrane fusion of hepatitis C virus. Journal of Biological Chemistry, 282(44), 32357–32369. https://doi.org/10.1074/jbc.M705358200
Mendeley helps you to discover research relevant for your work.