The F1 F0-ATP synthase utilizes the transmembrane H+ gradient for the synthesis of ATP. F0 subunit c-ring plays a key role in transporting H+ through F0 in the membrane. We investigated the interactions of Escherichia coli subunit c with dimyristoylphosphatidylcholine (DMPC-d54) at lipid/protein ratios of 50:1 and 20:1 by means of 2H-solid-state NMR. In the liquid-crystalline state of DMPC, the 2H-NMR moment values and the order parameter (SCD) profile were little affected by the presence of subunit c, suggesting that the bilayer thickness in the liquid-crystalline state is matched to the transmembrane hydrophobic surface of subunit c. On the other hand, hydrophobic mismatch of subunit c with the lipid bilayer was observed in the gel state of DMPC. Moreover, the viscoelasticity represented by a square-law function of the 2H-NMR relaxation was also little influenced by subunit c in the fluid phase, in contrast with flexible nonionic detergents or rigid additives. Thus, the hydrophobic matching of the lipid bilayer to subunit c involves at least two factors, the hydrophobic length and the fluid mechanical property. These findings may be important for the torque generation in the rotary catalytic mechanism of the F1F 0-ATPse molecular motor. © 2008 by the Biophysical Society.
CITATION STYLE
Kobayashi, M., Struts, A. V., Fujiwara, T., Brown, M. F., & Akutsu, H. (2008). Fluid mechanical matching of H+-ATP synthase subunit c-ring with lipid membranes revealed by2H solid-state NMR. Biophysical Journal, 94(11), 4339–4347. https://doi.org/10.1529/biophysj.107.123745
Mendeley helps you to discover research relevant for your work.