Inactivation of wild-type p53 by a dominant negative mutant renders MCF-7 cells resistant to tubulin-binding agent cytotoxicity

34Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The present study was performed to gain insight into the role of p53 on the cytotoxicity of tubulin-binding agents (TBA) on cancer cells. Drug sensitivity, cell cycle distribution and drug-induced apoptosis were compared in 2 lines derived from the mammary adenocarcinoma MCF-7: the MN-1 cell line containing wild-type p53 (wt-p53) and the MDD2 line, containing a dominant negative variant of the p53 protein (mut-p53). The MDD2 cell line was significantly more resistant to the cytotoxic effects of vinblastine and paclitaxel than the MN1 cell line. MN1 cells, but not MDD2 cells, displayed wt-p53 protein accumulation as well as p21/WAF1 and cyclin G1 induction after exposure to TBA. Both cell lines arrested at G2/M after drug treatment. However exposure of MN1 cells to TBA resulted in a stronger variation in mitochondrial membrane potential, associated with cleavage of PARP, and more apoptosis, as measured by annexin V expression. After exposure to vinblastine, Raf 1 kinase activity was reduced in MDD2 cells but not in MN1 cells. Addition of flavopiridol to vinblastine- and paclitaxel-treated cells reversed the MDD2-resistant phenotype by inducing G1 cell cycle arrest and inhibiting endoreduplication. We conclude that the p53 status of cancer cells influences their sensitivity to TBA cytotoxicity. This effect is likely to involve differences in the apoptotic cascade. © 2001 Cancer Research Campaign.

Cite

CITATION STYLE

APA

Galmarini, C. M., Falette, N., Tabone, E., Levrat, C., Britten, R., Voorzanger-Rousselot, N., … Dumontet, C. (2001). Inactivation of wild-type p53 by a dominant negative mutant renders MCF-7 cells resistant to tubulin-binding agent cytotoxicity. British Journal of Cancer, 85(6), 902–908. https://doi.org/10.1054/bjoc.2001.2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free