Effects of Hygrothermal Aging and Cyclic Compressive Loading on the Mechanical and Electrical Properties of Conductive Composites

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Conductive polymers and their composites have been widely applied in different applications, including sensing applications. Herein, we constructed a conductive composite of polypropylene, carbon black, and multi-walled carbon nanotubes (PP/CB/MWCNTs) to experimentally study its sensing behaviors in a humid thermal environment. The as-synthesized PP/CB/MWCNT composite polymer was immersed in simulated sweat in deionized water at 67 °C. Regarding their electrical and mechanical properties, different experimental parameters, such as cyclic loading and hygrothermal aging, were investigated by recording the mass changes, carrying out strain sensing experiments, and performing dynamic mechanical analyses before and after the immersion test. The results reveal that the filler content improved the rate of water absorption but decreased at higher concentrations of the solution. The sensitivity of the material decreased by up to 53% after the hygrothermal ageing and cyclic loading. Moreover, the sensitivity under cyclic compression loading decreased with an increasing immersion time, qualitatively illustrated by an effective quantum tunneling effect and conducting path model. Finally, hygrothermal aging reduced the composite’s glass transition temperature. This reduction was the most significant for specimens immersed in deionized water, ascribed to the moisture absorption, reducing the molecular chain activity.

Cite

CITATION STYLE

APA

Yi, S., Xie, L., Wu, Z., Ning, W., Du, J., & Zhang, M. (2022). Effects of Hygrothermal Aging and Cyclic Compressive Loading on the Mechanical and Electrical Properties of Conductive Composites. Polymers, 14(23). https://doi.org/10.3390/polym14235089

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free