Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development

8Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Coastal squids lay their eggs on the benthos, leaving them to develop in a dynamic system that is undergoing rapid acidification due to human influence. Prior studies have broadly investigated the impacts of ocean acidification on embryonic squid, but have not addressed the thresholds at which these responses occur or their potential variability. We raised squid, Doryteuthis pealeii (captured in Vineyard Sound, Massachusetts, USA: 41°23.370'N 70°46.418′W), eggs in three trials across the breeding season (May–September, 2013) in a total of six chronic pCO2 exposures (400, 550, 850, 1300, 1900, and 2200 ppm). Hatchlings were counted and subsampled for mantle length, yolk volume, hatching time, hatching success, and statolith morphology. New methods for analysis of statolith shape, rugosity, and surface degradation were developed and are presented (with code). Responses to acidification (e.g., reduced mantle lengths, delayed hatching, and smaller, more degraded statoliths) were evident at ~ 1300 ppm CO2. However, patterns of physiological response and energy management, based on comparisons of yolk consumption and growth, varied among trials. Interactions between pCO2 and hatching day indicated a potential influence of exposure time on responses, while interactions with culture vessel highlighted the substantive natural variability within a clutch of eggs. While this study is consistent with, and expands upon, previous findings of sensitivity of the early life stages to acidification, it also highlights the plasticity and potential for resilience in this population of squid.

Cite

CITATION STYLE

APA

Zakroff, C., Mooney, T. A., & Berumen, M. L. (2019). Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology, 166(5). https://doi.org/10.1007/s00227-019-3510-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free