Vehicle regulations include limits for non-volatile particle number emissions with sizes larger than 23 nm. The measurements are conducted with systems that remove the volatile particles by means of dilution and heating. Recently, the option of measuring from 10 nm was included in the Global Technical Regulation (GTR 15) as an additional option to the current >23 nm methodology. In order to avoid artefacts, i.e., measuring volatile particles that have nucleated downstream of the evaporation tube, a heated oxidation catalyst (i.e., catalytic stripper) is required. This review summarizes the studies with laboratory aerosols that assessed the volatile removal efficiency of evaporation tube and catalytic stripper-based systems using hydrocarbons, sulfuric acid, mixture of them, and ammonium sulfate. Special emphasis was given to distinguish between artefacts that happened in the 10–23 nm range or below. Furthermore, studies with vehicles’ aerosols that reported artefacts were collected to estimate critical concentration levels of volatiles. Maximum expected levels of volatiles for mopeds, motorcycles, light-duty and heavy-duty vehicles were also summarized. Both laboratory and vehicle studies confirmed the superiority of catalytic strippers in avoiding artefacts. Open issues that need attention are the sulfur storage capacity and the standardization of technical requirements for catalytic strippers.
CITATION STYLE
Giechaskiel, B., Melas, A. D., Lähde, T., & Martini, G. (2020, June 1). Non-Volatile Particle Number Emission Measurements with Catalytic Strippers: A Review. Vehicles. MDPI. https://doi.org/10.3390/vehicles2020019
Mendeley helps you to discover research relevant for your work.