A spider orb web is an extended phenotype; it modifies and interacts with the environment, influencing spider physiology. Orb webs are plastic, responding to variations in prey parameters. Studies attempting to understand how nutrients influence spider orb-web plasticity have been hampered by the inability to decouple prey nutrients from other, highly correlated, prey factors and the intrinsic link between prey protein and prey energy concentration. I analyzed the nutrient concentrations of cockroaches, and adult and juvenile crickets to devise experiments that controlled prey protein concentration while varying prey size, ingested mass, energy concentration and feeding frequency of the orb web spider Argiope keyserlingi. I found that A. keyserlingi alters overall architecture according to feeding frequency. Decoration length was inversely related to ingested prey mass and/or energy density in one experiment but directly related to ingested prey mass in another. These contradictory results suggest that factors not examined in this study have a confounding influence on decoration plasticity. As decorations attract prey as well as predators decreasing decoration investment may, in some instances, be attributable to benefits no longer outweighing the risks. Web area was altered according to feeding frequency, and mesh size altered according to feeding frequency and prey length. The number of radii in orb webs was unaffected by prey parameters. A finite amount of silk can be invested in the orb web, so spiders tradeoff smaller mesh size with larger web capture area, explaining why feeding frequency influenced both web area and mesh size. Mesh size is additionally responsive to prey size via sensory cues, with spiders constructing webs suitable for catching the most common or most profitable prey. © 2010. Published by The Company of Biologists Ltd.
CITATION STYLE
Blamires, S. J. (2010). Plasticity in extended phenotypes: Orb web architectural responses to variations in prey parameters. Journal of Experimental Biology, 213(18), 3207–3212. https://doi.org/10.1242/jeb.045583
Mendeley helps you to discover research relevant for your work.