Base pairing between the 3' end of 16S rRNA and mRNA is shown to be important for the programmed -1 frameshifting utilized in decoding the Escherichia coli dnaX gene. This pairing is the same as the Shine-Dalgarno pairing used by prokaryotic ribosomes in selection of translation initiators, but for frameshifting the interaction occurs within elongating ribosomes. For dnaX -1 frameshifting, the 3' base of the Shine-Dalgarno sequence is 10 nucleotides 5' of the shift site. Previously, Shine-Dalgarno rRNA-mRNA pairing was shown to stimulate the +1 frameshifting necessary for decoding the release factor 2 gene. However, in the release factor 2 gene, the Shine- Dalgarno sequence is located 3 nucleotides 5' of the shift site. When the Shine-Dalgarno sequence is moved to the same position relative to the dnaX shift site, it is inhibitory rather than stimulatory. Shine-Dalgarno interactions by elongating ribosomes are likely to be used in stimulating -1 frameshifting in the decoding of a variety of genes.
CITATION STYLE
Larsen, B., Wills, N. M., Gesteland, R. F., & Atkins, J. F. (1994). rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. Journal of Bacteriology, 176(22), 6842–6851. https://doi.org/10.1128/jb.176.22.6842-6851.1994
Mendeley helps you to discover research relevant for your work.