Energy dissipation and transport in nanoscale devices

966Citations
Citations of this article
851Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (~10-8 W) to massive data centers (~109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Pop, E. (2010). Energy dissipation and transport in nanoscale devices. Nano Research. Tsinghua University Press. https://doi.org/10.1007/s12274-010-1019-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free