Gene Network Analysis of the Transcriptome Impact of SARS-CoV-2 Interacting MicroRNAs in COVID-19 Disease

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

According to the World Health Organization (WHO), as of June 2022, over 536 million confirmed COVID-19 disease cases and over 6.3 million deaths had been globally reported. COVID-19 is a multiorgan disease involving multiple intricated pathological mechanisms translated into clinical, biochemical, and molecular changes, including microRNAs. MicroRNAs are essential post-transcriptional regulators of gene expression, being involved in the modulation of most biological processes. In this study, we characterized the biological impact of SARS-CoV-2 interacting microRNAs differentially expressed in COVID-19 disease by analyzing their impact on five distinct tissue transcriptomes. To this end, we identified the microRNAs’ predicted targets within the list of differentially expressed genes (DEGs) in tissues affected by high loads of SARS-CoV-2 virus. Next, we submitted the tissue-specific lists of the predicted microRNA-targeted DEGs to gene network functional enrichment analysis. Our data show that the upregulated microRNAs control processes such as mitochondrial respiration and cytokine and cell surface receptor signaling pathways in the heart, lymph node, and kidneys. In contrast, downregulated microRNAs are primarily involved in processes related to the mitotic cell cycle in the heart, lung, and kidneys. Our study provides the first exploratory, systematic look into the biological impact of the microRNAs associated with COVID-19, providing a new perspective for understanding its multiorgan physiopathology.

Author supplied keywords

References Powered by Scopus

Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

3117Citations
N/AReaders
Get full text

Cytokine storm

2170Citations
N/AReaders
Get full text

MicroRNA in control of gene expression: An overview of nuclear functions

952Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation

17Citations
N/AReaders
Get full text

MicroRNA (miRNA) Complexity in Alzheimer’s Disease (AD)

14Citations
N/AReaders
Get full text

Differentially-regulated miRNAs in COVID-19: A systematic review

9Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Moatar, A. I., Chis, A. R., Marian, C., & Sirbu, I. O. (2022, August 1). Gene Network Analysis of the Transcriptome Impact of SARS-CoV-2 Interacting MicroRNAs in COVID-19 Disease. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms23169239

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

56%

Researcher 2

22%

Professor / Associate Prof. 1

11%

Lecturer / Post doc 1

11%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 4

50%

Computer Science 2

25%

Agricultural and Biological Sciences 1

13%

Medicine and Dentistry 1

13%

Save time finding and organizing research with Mendeley

Sign up for free