The large-scale synthesis of high-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) plays a crucial role in fabricating high-performance and multiapplication-scenario electronics. This work develops a straightforward, continuous, and scalable method to synthesize high-purity and individual s-SWCNTs with small-diameters distribution (≈1 nm). It is believed that the water and carbon dioxide resulting from the decomposition of isopropanol act as oxidizing agents and selectively etch metallic SWCNTs, hence enhancing the production of s-SWCNTs. The performance of individual-SWCNTs field effect transistors confirms the high abundance of s-SWCNTs, presenting a mean mobility of 376 cm2 V−1 s−1 and a high mobility of 2725 cm2 V−1 s−1 with an on-current to off-current (Ion/Ioff) ratio as high as 2.51 × 107. Moreover, thin-film transistors based on the as-synthesized SWCNTs exhibit excellent performance with a mean mobility of 9.3 cm2 V−1 s−1 and Ion/Ioff ratio of 1.3× 105, respectively, verifying the enrichment of s-SWCNTs. This work presents a simple and feasible route for the sustainable synthesis of high-quality s-SWCNTs for electronic devices.
CITATION STYLE
Liu, P., Khan, A. T., Ding, E. X., Zhang, Q., Xu, Z., Bai, X., … Kauppinen, E. I. (2023). Direct Synthesis of Semiconducting Single-Walled Carbon Nanotubes Toward High-Performance Electronics. Advanced Electronic Materials, 9(7). https://doi.org/10.1002/aelm.202300196
Mendeley helps you to discover research relevant for your work.