We introduce a fully online model of maximum cardinality matching in which all vertices arrive online. On the arrival of a vertex, its incident edges to previously arrived vertices are revealed. Each vertex has a deadline that is after all its neighbors' arrivals. If a vertex remains unmatched until its deadline, then the algorithm must irrevocably either match it to an unmatched neighbor or leave it unmatched. The model generalizes the existing one-sided online model and is motivated by applications including ride-sharing platforms, real-estate agency, and so on. We show that the Ranking algorithm by Karp et al. (STOC 1990) is 0.5211-competitive in our fully online model for general graphs. Our analysis brings a novel charging mechanic into the randomized primal dual technique by Devanur et al. (SODA 2013), allowing a vertex other than the two endpoints of a matched edge to share the gain. To our knowledge, this is the first analysis of Ranking that beats 0.5 on general graphs in an online matching problem, a first step toward solving the open problem by Karp et al. (STOC 1990) about the optimality of Ranking on general graphs. If the graph is bipartite, then we show a tight competitive ratio ≈0.5671 of Ranking. Finally, we prove that the fully online model is strictly harder than the previous model as no online algorithm can be 0.6317 < 1- 1/e-competitive in our model, even for bipartite graphs.
CITATION STYLE
Huang, Z., Kang, N., Tang, Z. G., Wu, X., Zhang, Y., & Zhu, X. (2020). Fully Online Matching. Journal of the ACM, 67(3). https://doi.org/10.1145/3390890
Mendeley helps you to discover research relevant for your work.