The Ca2+ homeostasis defects in a pgm2Δ strain of Saccharomyces cerevisiae are caused by excessive vacuolar Ca2+ uptake mediated by the Ca2+-ATPase Pmc1p

19Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Loss of the major isoform of phosphoglucomutase (PGM) causes an accumulation of glucose 1-phosphate when yeast cells are grown with galactose as the carbon and energy source. Remarkably, the pgm2Δ strain also exhibits a severe imbalance in intracellular Ca2+ homeostasis when grown under these conditions. In the present study, we examined how the pgm2Δ mutation alters yeast Ca2+ homeostasis in greater detail. We found that a shift from glucose to galactose as the carbon source resulted in a 2-fold increase in the rate of cellular Ca2+ uptake in wild-type cells, whereas Ca2+ uptake increased 8-fold in the pgm2Δ mutant. Disruption of the PMC1 gene, which encodes the vacuolar Ca2+-ATPaSe Pmc1p, suppressed the Ca2+-related phenotypes observed in the pgm2Δ strain. This suggests that excessive vacuolar Ca2+ uptake is tightly coupled to these defects in Ca2+ homeostasis. An in vitro assay designed to measure Ca2+ sequestration into intracellular compartments confirmed that the pgm2Δ mutant contained a higher level of Pmc1p-dependent Ca2+ transport activity than the wild-type strain. We found that this increased rate of vacuolar Ca2+ uptake also coincided with a large induction of the unfolded protein response in the pgm2Δ mutant, suggesting that Ca2+ uptake into the endoplasmic reticulum compartment was reduced. These results indicate that the excessive Ca2+ uptake and accumulation previously shown to be associated with the pgm2Δ mutation are due to a severe imbalance in the distribution of cellular Ca2+ into different intracellular compartments.

Cite

CITATION STYLE

APA

Aiello, D. P., Fu, L., Miseta, A., Sipos, K., & Bedwell, D. M. (2004). The Ca2+ homeostasis defects in a pgm2Δ strain of Saccharomyces cerevisiae are caused by excessive vacuolar Ca2+ uptake mediated by the Ca2+-ATPase Pmc1p. Journal of Biological Chemistry, 279(37), 38495–38502. https://doi.org/10.1074/jbc.M400833200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free