Following unstable ignition of carbon, but prior to explosion, a white dwarf (WD) in a Type Ia supernova (SN Ia) undergoes a simmering phase. During this time, a central convective region grows and encompasses ~1 Msun of the WD over a timescale of ~1000 yrs, which sets the thermal and turbulent profile for the subsequent explosion. We study this time-dependent convection and summarize some of the key features that differ from the traditional, steady-state case. We show that the long conductive timescale above the convective zone and the extraction of energy to heat the WD core leads to a decrease of the convective luminosity and characteristic velocities near the convective zone's top boundary. In addition, differences in the composition between the convective core and the conductive exterior will significantly alter the location of this boundary. In this respect, we find the biggest effect due to complete 22Ne sedimentation prior to carbon ignition. These effects add diversity to the possible WD models, which may alter the properties of the SN Ia explosion.
CITATION STYLE
Piro, A. L., & Chang, P. (2008). Convection during the Late Stages of Simmering in Type Ia Supernovae. The Astrophysical Journal, 678(2), 1158–1164. https://doi.org/10.1086/529368
Mendeley helps you to discover research relevant for your work.