Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae

  • Gambin Y
  • Ariotti N
  • McMahon K
  • et al.
N/ACitations
Citations of this article
91Readers
Mendeley users who have this article in their library.

Abstract

In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae.If you could look closely enough at the surface of some animal cells, especially fat or muscle cells, you would see that they are covered with pocket-like indents called ‘caveolae’. These structures are thought to help the cells communicate with the outside world, but they can also be used by viruses to gain entry into living cells.Examining these caveolae even closer would reveal that these pockets contain proteins called caveolins that bind to each other—and also to cholesterol and fatty acids—to form a scaffold that help to maintain the shape of the caveolae from inside the cell. Each caveolae in a mammalian cell typically contains over 100 caveolin proteins. Caveolar coat proteins, or cavins for short, are also important building blocks for caveolae: however, we know relatively little about the interactions between caveolins and cavins.Now, Gambin et al. have used powerful new single-molecule techniques to study these interactions. These experiments looked at the three main types of cavin proteins that associate with caveolae, and by tracking individual protein molecules they showed that cavin1 can interact with either cavin2 or cavin3, but that cavin2 and cavin3 do not interact with each other. Furthermore, cavin2 and cavin3 exist in separate stripes on a caveolae. Gambin et al. also stretched the cell membrane by forcing cells to take in extra water, and showed that this caused the cavin coat to peel away from the caveolae and break down into distinct cavin1-cavin2 and cavin1-cavin3 building blocks.Faulty versions of caveolins and cavins have both been associated with several diseases in humans, including heart disease and muscle disorders. As such, an improved understanding of the formation and break down of caveolae may prove useful for developing treatments for these conditions.

Cite

CITATION STYLE

APA

Gambin, Y., Ariotti, N., McMahon, K.-A., Bastiani, M., Sierecki, E., Kovtun, O., … Parton, R. G. (2014). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife, 3. https://doi.org/10.7554/elife.01434

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free