Comparison of different machine learning algorithms to estimate liquid level for bioreactor management

12Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Estimating the liquid level in an anaerobic digester can be disturbed by its closedness, bubbles and scum formation, and the inhomogeneity of the digestate. In our previous study, a soft-sensor approach using seven pressure meters has been proposed as an alternative for real-time liquid level estimation. Here, machine learning techniques were used to improve the estimation accuracy and optimize the number of sensors required in this approach. Four algorithms, multiple linear regression (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) with radial basis function kernel were compared for this purpose. All models outperformed the cubic model developed in the previous study, among which the ANN and RF models performed the best. Variable importance analysis suggested that the pressure readings from the top (in the headspace) were the most significant, while the other pressure meters showed varying significance levels depending on the model type. The sensor that experienced both headspace and liquid phases depending on the level variation incurred a higher error than other sensors. The results showed that the ML techniques can provide an effective tool to estimate digester liquid levels by optimizing the number of sensors and reducing the error rate.

Cite

CITATION STYLE

APA

Yu, S. I., Rhee, C., Hwa Cho, K., & Shin, S. G. (2023). Comparison of different machine learning algorithms to estimate liquid level for bioreactor management. Environmental Engineering Research, 28(2). https://doi.org/10.4491/eer.2022.037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free