Interference of mRNA function by sequence-specific endoribonuclease PemK

118Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In Escherichia coli, programmed cell death is mediated through the system called "addiction module," which consists of a pair of genes encoding a stable toxin and a labile antitoxin. The pemI-pemK system is an addiction module present on plasmid R100. It helps to maintain the plasmid by post-segregational killing in E. coli population. Here we demonstrate that purified PemK, the toxin encoded by the pemI-pemK addiction module, inhibits protein synthesis in an E. coli cell-free system, whereas the addition of PemI, the antitoxin against PemK, resumes the protein synthesis. Further studies reveal that PemK is a sequence-specific endoribonuclease that cleaves mRNAs to inhibit protein synthesis, whereas PemI blocks the endoribonuclease activity of PemK. PemK cleaves only single-stranded RNA preferentially at the 5′ or 3′ side of the A residue in the "UAH" sequences (where H is C, A, or U). Upon induction, PemK cleaves cellular mRNAs to effectively block protein synthesis in E. coli. The pemK homologue genes have been identified on the genomes of a wide range of bacteria. We propose that PemK and its homologues form a novel endoribonuclease family that interferes with mRNA function by cleaving cellular mRNAs in a sequence-specific manner.

Cite

CITATION STYLE

APA

Zhang, J., Zhang, Y., Zhu, L., Suzuki, M., & Inouye, M. (2004). Interference of mRNA function by sequence-specific endoribonuclease PemK. Journal of Biological Chemistry, 279(20), 20678–20684. https://doi.org/10.1074/jbc.M314284200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free