Spatial patterns in residual bed reflection power (BRPr), derived from ground-based radio-echo sounding, were mapped and interpreted in terms of the thermal and hydrological conditions at the base of a high-Arctic polythermal glacier (John Evans Glacier, Ellesmere Island, Canada). BRPr is the residual from a statistical relationship between measured bed reflection power and ice thickness that describes the rate of dielectric loss with depth in the glacier. We identified three types of thermal structure: (a) Positive BRPr and an internal reflecting horizon occur over the glacier terminus. The reflecting horizon is interpreted as the boundary between warm and cold ice, and suggests the presence of a warm basal layer. (b) Positive BRPr occurs without an internal reflector in the upper part of the ablation zone. This suggests that ice is at the pressure-melting point only at the bed. (c) Negative BRPr without an internal reflector occurs in all other regions, suggesting cold ice at the bed. Where BRPr is positive, its pattern is similar to the pattern of subglacial water flow predicted from the form of the subglacial hydraulic equipotential surface. This suggests that hydrological conditions at the glacier bed are a major control on BRPr, probably because the dielectric contrast between ice and water is higher than that between ice and other subglacial materials.
CITATION STYLE
Copland, L., & Sharp, M. (2001). Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. Journal of Glaciology, 47(157), 232–242. https://doi.org/10.3189/172756501781832377
Mendeley helps you to discover research relevant for your work.