Automatic prediction of learning styles: a comprehensive analysis of classification models

2Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Learning styles are a topic of interest in educational research about how individuals acquire and process information in offline or online learning. Identification of learning styles in the online learning environment is challenging. The existing approaches for the identification of learning styles are limited. This study aims to review the many learning styles characterized by various classification approaches toward the automatic prediction of learning styles from learning management system (LMS) datasets. A systematic literature review (SLR) was conducted to select and analyze the most pertinent and significant papers for automatically predicting learning styles. Fifty-two research papers were published between 2015-2023. This research divides analysis into five categories: the classification of learning style models, the collection of the collected dataset, learning styles based on the curriculum, research objectives related to learning styles, and the comprehensive analysis of learning styles. This study found that learning style research encompasses diverse theories, models, and algorithms to understand individual learning preferences. Statistical analysis, explicit data collection, and the Felder-Silverman model are prevalent in research, highlighting the significance of algorithm improvement for optimizing learning processes, particularly in computer science. The categorization and understanding of various methods offer valuable insights for enhancing learning experiences in the future.

References Powered by Scopus

Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement

53614Citations
N/AReaders
Get full text

PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation

20086Citations
N/AReaders
Get full text

The ASA's Statement on p-Values: Context, Process, and Purpose

4516Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Classification of natural specializations by priority component of the telescopic model of the natural cycle of activity

0Citations
N/AReaders
Get full text

User Behavior Analysis and Prediction Model Construction in Higher Education Management Information Systems

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Lestari, U., Salam, S., Choo, Y. H., Alomoush, A., & Al Qallab, K. (2024). Automatic prediction of learning styles: a comprehensive analysis of classification models. Bulletin of Electrical Engineering and Informatics, 13(5), 3675–3685. https://doi.org/10.11591/eei.v13i5.7456

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

50%

Professor / Associate Prof. 2

25%

Lecturer / Post doc 2

25%

Readers' Discipline

Tooltip

Computer Science 4

44%

Philosophy 2

22%

Chemistry 2

22%

Engineering 1

11%

Save time finding and organizing research with Mendeley

Sign up for free