Analysis and comparison of non-coherent and differential acquisition integration strategies

4Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the application of global satellite position system, signal adaptive acquisition strategies are required for various environment applications, such as weak signal, emergency moment, so fast and high sensitivity acquisition algorithms are important for the receiver process. This paper presents acquisition algorithms: coherent integration, non-coherent integration, differential coherent and differential non-coherent integration, and the differential integration are analyzed in both standard and pair-wise form, all of which are theoretically compared in their probability distribution with detailed analysis. And testing statics using Monte-Carlo with collected realistic various signal, considering the existence of carrier Doppler frequency and code phase shift in the objectives, give out that in certain probability of detection, differential standard coherent integration is the best detector, non-coherent integration is the second best; and differential pair-wise coherent, differential standard and pair-wise non-coherent integration give out almost the same performance; and the standard algorithm is more tolerable in residual Doppler environment than the pair-wise algorithm; the code phase shift will affect much more in the lower probability of detection; finally, in the theory analysis, the hypothesis of approximated gauss distribution and the IQ data completely independence with each other need to be revised in more accurate model to fit the actual data.

Cite

CITATION STYLE

APA

Zeng, D., Ou, S., Li, J., Sun, J., Yan, Y., & Li, H. (2015). Analysis and comparison of non-coherent and differential acquisition integration strategies. In Lecture Notes in Electrical Engineering (Vol. 340, pp. 163–176). Springer Verlag. https://doi.org/10.1007/978-3-662-46638-4_16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free