Grains number is one of the most important agronomic traits in the determination of rice productivity. To explore the underlying genetic basis of grain number in rice, quantitative trait locus (QTL) analysis was performed using three recombinant inbred line populations derived from indica rice crosses of Teqing/IRBB lines, Zhenshan 97/Milyang 46, and Xieqingzao/Milyang 46, respectively. A total of 58 QTLs distributed on all 12 rice chromosomes were identified, including 22 for number of grains per panicle (NGP), 17 for number of spikelets per panicle, and 19 for spikelet fertility. The individual QTL counted for 1.5 to 22.1% of phenotypic variation. Among them, 15 QTLs shared by two or three populations and eight QTLs showed large effects with R2 larger than 10%. Furthermore, three QTLs with minor effects for NGP, qNGP5.5, qNGP9.1, and qNGP12.1, were detected and validated by eliminating the segregation of major-effect QTL using four residual heterozygote-derived populations. These results not only enrich our understanding of the mechanism of grain number, but also provide a foundation for cloning and selecting candidate for marker-assisted selection breeding in rice.
CITATION STYLE
Niu, X., Zhu, Y., Sun, Z., Yu, S., Zhuang, J., & Fan, Y. (2020). Identification and validation of quantitative trait loci for grain number in rice (oryza sativa l.). Agronomy, 10(2). https://doi.org/10.3390/agronomy10020180
Mendeley helps you to discover research relevant for your work.