Chromosomal evolution of Escherichia coli for the efficient production of lycopene

63Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Plasmid-based overexpression of genes has been the principal strategy for metabolic engineering. However, for biotechnological applications, plasmid-based expression systems are not suitable because of genetic instability, and the requirement for constant selective pressure to ensure plasmid maintenance.Results: To overcome these drawbacks, we constructed an Escherichia coli lycopene production strain that does not carry a plasmid or an antibiotic marker. This was achieved using triclosan-induced chromosomal evolution, a high gene copy expression system. The engineered strain demonstrated high genetic stability in the absence of the selective agent during fermentation. The replacement of native appY promoter with a T5 promoter, and the deletion of the iclR gene in E. coli CBW 12241 further improved lycopene production. The resulting strain, E. coli CBW 12241(ΔiclR, PT5-appY), produced lycopene at 33.43 mg per gram of dry cell weight.Conclusions: A lycopene hyper-producer E. coli strain that does not carry a plasmid or antibiotic marker was constructed using triclosan-induced chromosomal evolution. The methods detailed in this study can be used to engineer E. coli to produce other metabolites. © 2013 Chen et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Chen, Y. Y., Shen, H. J., Cui, Y. Y., Chen, S. G., Weng, Z. M., Zhao, M., & Liu, J. Z. (2013). Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnology, 13. https://doi.org/10.1186/1472-6750-13-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free