Chitosan Containing Nano Zn-Organic Framework: Synthesis, Characterization and Biological Activity

4Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

A biologically active agent based on a Zn-1,3,5-benzen tricarboxylic acid (Zn-BTC) framework incorporated into a chitosan (CS) biopolymer (Zn-BTC@CS) was successfully synthesized using a microwave irradiation technique. The synthesized Zn-BTC@CS was characterized using a scanning electron microscope (SEM) and the obtained data indicated a highly smooth surface morphology of the synthesized Zn-BTC and no morphological changes when the Zn-BTC covered the CS. In addition, the particle size diameter varied from 20 to 40 nm. XRD displayed a well-maintained Zn-BTC structure, and the crystal structure of Zn-BTC was not distorted by the composition of Zn-BTC and chitosan in the nanocomposite. Data from BET analysis revealed that the specific surface area of the Zn-BTC was reduced from 995.15 m2/g to 15.16 m2/g after coating with chitosan. The pore size distribution and pore volume of the Zn-BTC, Zn-BTC@CS were centered at 37.26 nm and at 22.5 nm, respectively. Zn-BTC@CS exhibited anticancer efficacy against lung and colon cancer cell lines. Zn-BTC@CS inhibited the proliferation of A549 and DLD-1 cancer cell lines in a dose-dependent manner with IC50 values of 13.2 and 19.8 µg/mL for the colon and lung cancer cell lines, respectively. Zn-BTC@CS stimulated the apoptotic process through up-regulating P53 expression and down-regulating Bcl-2 expression. Moreover, Zn-BTC@CS induced in vitro DNA fragmentation in both cancer cell lines with significantly different affinity by 66% (A549) and 20% (DLD-1) versus 52% reduction by Cisplatin. Zn-BTC@CS (IC50) exhibited anti-invasive activity and dramatically inhibited the migration of lung and colon cancer cell lines. This study provides evidence that Zn-BTC@CS targets the essential proteins involved in proliferation, metastasis, and apoptosis. Thus, Zn-BTC@CS has chemotherapeutic potential for inhibiting lung and colon cancer viability and growth.

Cite

CITATION STYLE

APA

Gouda, M., Ibrahim, H. I. M., & Negm, A. (2022). Chitosan Containing Nano Zn-Organic Framework: Synthesis, Characterization and Biological Activity. Polymers, 14(7). https://doi.org/10.3390/polym14071276

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free