Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS

55Citations
Citations of this article
92Readers
Mendeley users who have this article in their library.

Abstract

Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexes by native MS. We show that the use of ion mobility MS in combination with surface-induced dissociation (SID) allows for the rapid determination of the stoichiometry and topology of designed complexes. The information collected along with the speed of data acquisition and processing make SID ion mobility MS well-suited to determine key structural features of designed protein complexes, thereby circumventing the requirement for more time- and sampleconsuming structural biology approaches.

Cite

CITATION STYLE

APA

Sahasrabuddhe, A., Hsia, Y., Busch, F., Sheffler, W., King, N. P., Baker, D., & Wysocki, V. H. (2018). Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1268–1273. https://doi.org/10.1073/pnas.1713646115

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free