Nitidine chloride-induced CYP1 enzyme inhibition and alteration of estradiol metabolism

11Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The cytochrome P450 (P450) 1 family is an important phase I enzyme involved in carcinogen activation. Nitidine chloride (NC) is a pharmacologically active alkaloid with polyaromatic hydrocarbon found in the roots of Zanthoxylum nitidum (Roxb.) DC, a traditional medicinal herb widely used in China. We examined the inhibitory effects of NC on CYP1A1, 1B1, and 1A2. NC significantly inhibited CYP1A1- and 1B1-catalyzed ethoxyresorufin O-deethylation activity (IC50 5 0.28±0.06 and 0.32±0.02 mM, respectively) in a concentration- dependent manner, but only showed slight inhibition of CYP1A2 activity (IC50 > 50 mM). Kinetic analysis revealed that NC competitively inhibited CYP1B1 with a Ki value of 0.47±0.05 mM, whereas NC caused a mixed type of inhibition on CYP1A1 with Ki and KI values of 0.14±0.04 and 0.19±0.09 mM, respectively. The observed enzyme inhibition neither required NADPH nor revealed time dependency. Molecular docking manifested the generation of strong hydrogen-bonding interactions of Ser116 in CYP1A1 and Ser127 in CYP1B1 with methoxy moiety of NC. Additionally, NC-induced alteration of estradiol (E2) metabolism was also investigated in the present study. Hydroxyestradiols, including 2-hydroxyestradiol [(2-OHE2) nontoxic] and 4-hydroxyestradiol [(4-OHE2) genotoxic] generated in recombinant enzyme incubation systems and cultured MCF-7 cells were analyzed, and NC was found to preferentially inhibit the nontoxic 2-hydroxylation activity of E2 mediated by CYP1A1. In conclusion, NCwas a mixed type inhibitor of CYP1A1 and a competitive inhibitor of CYP1B1. The remarkable inhibition on E2 2-hydroxylation might increase the risk of 4- OHE2-induced genotoxicity.

Cite

CITATION STYLE

APA

Mao, X., Wang, J., Wang, Q., Yang, L., Li, Y., Lin, H., … Zheng, J. (2019). Nitidine chloride-induced CYP1 enzyme inhibition and alteration of estradiol metabolism. Drug Metabolism and Disposition, 47(8), 919–927. https://doi.org/10.1124/dmd.119.086892

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free