Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma (NHL). In cancers, tumor suppressive microRNAs may be silenced by DNA hypermethylation. By microRNA profiling of representative EBV-negative MCL cell lines before and after demethylation treatment, miR-155-3p was found significantly restored. Methylation-specific PCR, verified by pyrosequencing, showed complete methylation of miR-155-3p in one MCL cell line (REC-1). 5-aza-2′-deoxycytidine treatment of REC-1 led to demethylation and re-expression of miR-155-3p. Overexpression of miR-155-3p led to increased sub-G1 apoptotic cells and reduced cellular viability, demonstrating its tumor suppressive properties. By luciferase assay, lymphotoxin-beta (LT-β) was validated as a miR-155-3p target. In 31 primary MCL, miR-155-3p was found hypermethylated in 6(19%) cases. To test if methylation of miR-155-3p was MCL-specific, miR-155-3p methylation was tested in an additional 191 B-cell, T-cell and NK-cell NHLs, yielding miR-155-3p methylation in 66(34.6%) including 36(27%) non-MCL B-cell, 24(53%) T-cell and 6(46%) of NK-cell lymphoma. Moreover, in 72 primary NHL samples with RNA, miR-155-3p methylation correlated with miR-155-3p downregulation (p=0.024), and LT-β upregulation (p=0.043). Collectively, miR-155-3p is a potential tumor suppressive microRNA hypermethylated in MCL and other NHL subtypes. As miR-155-3p targets LT-β, which is an upstream activator of the non-canonical NF-kB signaling, miR-155-3p methylation is potentially important in lymphomagenesis.
CITATION STYLE
Yim, R. L., Wong, K. Y., Kwong, Y. L., Loong, F., Leung, C. Y., Chu, R., … Chim, C. S. (2014). Methylation of miR-155-3p in mantle cell lymphoma and other non-Hodgkin’s lymphomas. Oncotarget, 5(20), 9770–9782. https://doi.org/10.18632/oncotarget.2390
Mendeley helps you to discover research relevant for your work.