Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L) considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta), surface roughness (Ra) and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi's L27OA) are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs) are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.
CITATION STYLE
Gadallah, M. H., & Abdu, H. M. (2015). Modeling and optimization of laser cutting operations. Manufacturing Review, 2. https://doi.org/10.1051/mfreview/2015020
Mendeley helps you to discover research relevant for your work.