Comparison of hyaluronic acid-based micelles and polyethylene glycol-based micelles on reversal of multidrug resistance and enhanced anticancer efficacy in vitro and in vivo

21Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Polyethylene glycol (PEG)-based block copolymer micelles and hyaluronic acid (HA)-based grafted copolymer micelles have been widely investigated in chemotherapy. In this study, to evaluate the differences among HA-based grafted polymer micelles, PEG-based block polymer micelles and the mixed of these two micelles in enhancing antitumor effects and overcoming MDR, two amphiphilic vitamin E succinate (VES) derivatives, HA VES (HA-g-VES) and PEG 2000 VES (TPGS2k), were applied as nanocarriers to prepare HA-VES micelles (HA-PMs), TPGS2k micelles (TPGS2k-PMs) and the mixed micelles (HA/TPGS2k-PMs) for the co-delivery of doxorubicin (DOX) and curcumin (Cur). With the addition of TPGS2k, the particle size of HA/TPGS2k-PMs (153.37 ± 1.00 nm) was smaller than that of HA-PMs (223.83 ± 1.84) but significantly larger than that of TPGS2k-PMs (about 20 nm). The loading efficiency of HA/TPGS2k-PMs was 7.10%, which was lower than HA-PMs (8.31 ± 0.15%) but higher than TPGS2k-PMs (4.38 ± 0.24%). In vitro, HA/TPGS2k-PMs and TPGS2k-PMs exhibited higher cytotoxicity and reversal MDR effects than HA-PMs in MCF-7/Adr cells. However, HA/TPGS2k-PMs, HA-PMs and TPGS2k-PMs all significantly improved the tumor biodistribution, the antitumor effects and reduced the side effects of DOX in 4T1-tumor-bearing mice, but these three micelles displayed no differences in vivo. Therefore, EPR passive targeting effects caused by PEGylated micelles and CD44 active targeting effects caused by HA-based micelles have no significant variance in the delivery of antitumor drugs by i.v.

Cite

CITATION STYLE

APA

Wang, J., Li, Y., Wang, L., Wang, X., & Tu, P. (2018). Comparison of hyaluronic acid-based micelles and polyethylene glycol-based micelles on reversal of multidrug resistance and enhanced anticancer efficacy in vitro and in vivo. Drug Delivery, 25(1), 330–340. https://doi.org/10.1080/10717544.2018.1428385

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free