Behavior of Lime-Stabilized Red Bed Soil after Cyclic Wetting-Drying in Triaxial Tests and SEM Analysis

11Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most red beds demonstrate inferior geotechnical properties in natural conditions and need to be improved when used as construction material. In this study, a serious of triaxial tests, permeability tests, and scanning electron microscopy (SEM) analysis were carried out on lime-stabilized and untreated red bed soil after experiencing different wetting-drying (W-D) cycles. The test results showed that, with the increase in the added lime, the shear strength, strength parameters (including the cohesion and the internal friction angle), and the shear modulus of red bed soil increased gradually. For the untreated specimens, the four parameters decreased considerably after experiencing W-D cycles, while for the lime-stabilized specimens, they generally increased with an increase in the W-D cycles. Without experiencing the W-D cycles, the permeability coefficient increased by two times after it was stabilized with 10% lime. But with an increase in the W-D cycles, the permeability coefficient of the untreated and lime-stabilized specimens continuously increased and significantly decreased, respectively. Finally, variations in microstructure of the red bed soil under the effects of the lime stabilization and W-D cycles were discussed based on the SEM analysis. The results may contribute to improvement of red bed soil when used as roadbed and airfield fillings.

Cite

CITATION STYLE

APA

Song, Z., Zhang, D., Mao, Y., Mu, Y., Zhang, K., & Zhang, Q. (2020). Behavior of Lime-Stabilized Red Bed Soil after Cyclic Wetting-Drying in Triaxial Tests and SEM Analysis. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/4230519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free