Noise-induced chaos and signal detection by the nonisochronous Hopf oscillator

14Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Hopf oscillator has been shown to capture many phenomena of the auditory and vestibular systems. These systems exhibit remarkable temporal resolution and sensitivity to weak signals, as they are able to detect sounds that induce motion in the angstrom regime. In the present work, we find the analytic response function of a nonisochronous Hopf oscillator to a step stimulus and show that the system is most sensitive in the regime where noise induces chaotic dynamics. We show that this regime also provides a faster response and enhanced temporal resolution. Thus, the system can detect a very brief, low-amplitude pulse. Finally, we subject the oscillator to periodic delta-function forcing, mimicking a spike train, and find the exact analytic expressions for the stroboscopic maps. Using these maps, we find a period-doubling cascade to chaos with increasing force strength.

Cite

CITATION STYLE

APA

Faber, J., & Bozovic, D. (2019). Noise-induced chaos and signal detection by the nonisochronous Hopf oscillator. Chaos, 29(4). https://doi.org/10.1063/1.5091938

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free