Biological Evidence of Improved Wound Healing Using Autologous Micrografts in a Diabetic Animal Model

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Background: Tissue healing consists of four main phases: coagulation, inflammation, proliferation, and remodeling. In diabetic patients, this process is stagnant in the inflammatory stage, leading to chronic wounds. The aim of this study is to evaluate in an animal model the biological evidence related to the use of the Rigenera® technology (Turin Italy), an innovative mechanical procedure to isolate autologous micrografts (AMG). Methods: Fifty male Wistar rats were divided into four groups: control (C), control treated with micrografts (CM), diabetic (DB), and diabetic treated with micrografts (DBM). The experimental setup involved: the quantification of the total collagen and elastic fibers; histopathological analysis; immunohistochemical analysis for collagen type I (COL1), collagen type III (COL3), vascular endothelial growth factor (VEGF-A), and interleukin 4 (IL4) and 10 (IL10); evaluation of the oxidative stress; measurement of gluthatione (GSH); and, finally, an enzyme-linked immunosorbent assay (ELISA) on tumor necrosis factor-α (TNF-α). Results: The AMG technology induces a faster healing process: VEGF-A, IL4, IL10, and GSH increased, while TNF-α and oxidative stress decreased. Conclusions: Animals treated with micrografts showed more favorable results for healing compared to those that did not receive treatment, demonstrating a positive participation of the micrografts in the treatment of difficult-to-heal wounds.

Cite

CITATION STYLE

APA

Brandão Palma, M., Paolin, E., Ferreira de Melo, I. M., De Assis Leite Souza, F., Coelho Teixeira, Á. A., Duarte Vieira, L., … Soares, A. F. (2023). Biological Evidence of Improved Wound Healing Using Autologous Micrografts in a Diabetic Animal Model. Diabetology, 4(3), 294–311. https://doi.org/10.3390/diabetology4030026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free