A machine learning approach to model interdependencies between dynamic response and crack propagation

16Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Accurate damage detection in engineering structures is a critical part of structural health monitoring. A variety of non-destructive inspection methods has been employed to detect the presence and severity of the damage. In this research, machine learning (ML) algorithms are used to assess the dynamic response of the system. It can predict the damage severity, damage location, and fundamental behaviour of the system. Fatigue damage data of aluminium and ABS under coupled mechanical loads at different temperatures are used to train the model. The model shows that natural frequency and temperature appear to be the most important predictive features for aluminium. It appears to be dominated by natural frequency and tip amplitude for ABS. The results also show that the position of the crack along the specimen appears to be of little importance for either material, allowing simultaneous prediction of location and damage severity.

Cite

CITATION STYLE

APA

Fleet, T., Kamei, K., He, F., Khan, M. A., Khan, K. A., & Starr, A. (2020, December 1). A machine learning approach to model interdependencies between dynamic response and crack propagation. Sensors (Switzerland). MDPI AG. https://doi.org/10.3390/s20236847

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free