In many mammals, species-appropriate social behavior is necessary for an individual's ability to survive and reproduce. In the present study, we examined whether arginine-vasopressin (AVP) pathways that have been associated with social behavior differed between two closely related species of Peromyscus mice with different patterns of maternal behavior. We also tested whether individual levels of AVP-immunoreactive staining (AVP-ir) were associated with individual levels of maternal behavior as measured using a composite score consisting of huddling, nursing, grooming and time spent inside the nest (HNGI score). In addition, we examined whether these associations between vasopressin and behavior differed between species. Females from the highly biparental species, California mice, displayed higher AVP-ir in the bed nucleus of the stria terminalis (BNST), which corresponded with a higher level of nest building and a higher HNGI score than was found in the less parental white-footed mice. The HNGI score was positively associated with AVP-ir in the medial amygdala in female California mice but not white-footed mice. Finally, we examined whether AVP-ir in these pathways varied based on the species-specific rearing environments by reciprocally cross-fostering California mice and white-footed mice. In contrast to previous research with male California mice, cross-fostering itself had no effect on maternal behavior or any consistent effect on AVP-ir staining in brain areas such as the BNST and associated brain areas. This suggests that there is little plasticity in maternal behavior and that the underlying AVP system in females does not respond to the postnatal environment provided by the parents. The positive associations between maternal behavior and AVP-ir indicate that AVP may regulate maternal behavior despite the lack of plasticity in AVP and maternal behavior. © 2012 S. Karger AG, Basel.
CITATION STYLE
Bester-Meredith, J. K., & Marler, C. A. (2012). Naturally occurring variation in vasopressin immunoreactivity is associated with maternal behavior in female peromyscus mice. Brain, Behavior and Evolution, 80(4), 244–253. https://doi.org/10.1159/000341899
Mendeley helps you to discover research relevant for your work.