Ultrahigh ballistic resistance of twisted bilayer graphene

10Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Graphene is a good candidate for protective material owing to its extremely high stiffness and high strength-to-weight ratio. However, the impact performance of twisted bilayer graphene is still obscure. Herein we have investigated the ballistic resistance capacity of twisted bilayer graphene compared to that of AA-stacked bilayer graphene using molecular dynamic simulations. The energy propagation processes are identical, while the ballistic resistance capacity of the twisted bilayer graphene is almost two times larger than the AA-bilayer graphene. The enhanced capacity of the twisted bilayer graphene is assumed to be caused by the mismatch between the two sheets of graphene, which results in earlier fracture of the first graphene layer and reduces the possibility of penetration.

Cite

CITATION STYLE

APA

Peng, Q., Peng, S., & Cao, Q. (2021). Ultrahigh ballistic resistance of twisted bilayer graphene. Crystals, 11(2), 1–9. https://doi.org/10.3390/cryst11020206

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free