Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles

162Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The present study examined whether inhibition of P4504A enzyme activity and the formation of 20-HETE contributes to the activation of K+ channels and vasodilator effects of nitric oxide (NO) in renal arterioles. Addition of an NO donor to the P4504A2 enzyme that produces 20-HETE increased visible light absorbance at 440 nm indicating that NO binds to heme in this enzyme. NO donors also dose-dependently inhibited the formation of 20-HETE in microsomes prepared from renal arterioles. In patch-clamp experiments, NO donors increased the open-state probability of a voltage-sensitive, large- conductance (195±9 pS) K+ channel recorded with cell-attached patches on renal arteriolar smooth muscle cells. Blockade of guanylyl cyclase with [1H- [1,2,4]Oxadiazolo[4,3-a] quinoxalin-1-one] (ODQ, 10 μmol/L), or cGMP- dependent kinase with 8R,9S,11S-(-)-9-methoxycarbamyl-8-methyl-2,3,9,10- tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-trizadibenzo-(a,g)-cy-cloocta- (c,d,e)-trinden-1-one (KT-5823) (1 μmol/L) did not alter the effects of NO on this channel. In contrast, inhibition of the formation of 20-HETE with 17- octadecynoic acid (1 μmol/L) activated this channel and masked the response to NO. Preventing the NO-induced reduction in intracellular 20-HETE levels also blocked the effects of NO on this channel. Sodium nitroprusside (SNP) increased the diameter of renal interlobular arteries preconstricted with phenylephrine to 80±4% of control. Blockade of guanylyl cyclase with ODQ (10 μmol/L) attenuated the response to SNP by 26±2%; however, fixing 20-HETE levels at 100 nmol/L reduced the response by 67±8%. Blockade of both pathways eliminated the response to SNP. These results indicate that inhibition of the formation of 20-HETE contributes to the activation of K+ channels and the vasodilator effects of NO in the renal microcirculation.

Cite

CITATION STYLE

APA

Sun, C. W., Alonso-Galicia, M., Taheri, M. R., Falck, J. R., Harder, D. R., & Roman, R. J. (1998). Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circulation Research, 83(11), 1069–1079. https://doi.org/10.1161/01.RES.83.11.1069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free