In the study of the irreducible representations of the unitary groupU(n), one encounters a class of polynomials defined onn2indeterminateszij, 1≤i,j≤n, which may be arranged into ann×nmatrix arrayZ=(zij). These polynomials are indexed by double Gelfand patterns, or equivalently, by pairs of column strict Young tableaux of the same shape. Using the double labeling property, one may define a square matrixD(Z), whose elements are the double-indexed polynomials. These matrices possess the remarkable "group multiplication property"D(XY)=D(X)D(Y) for arbitrary matricesXandY, even though these matrices may be singular. ForZ=U∈U(n), these matrices give irreducible unitary representations ofU(n). These results are known, but not always fully proved from the extensive physics literature on representation of the unitary groups, where they are often formulated in terms of the boson calculus, and the multiplication property is unrecognized. The generality of the multiplication property is the key to understanding group representation theory from the purview of combinatorics. The combinatorial structure of the general polynomials is expected to be intricate, and in this paper, we take the first step to explore the combinatorial aspects of a special class which can be defined in terms of the set of integral matrices with given row and column sums. These special polynomials are denoted byLα,β(Z), whereαandβare integral vectors representing the row sums and column sums of a class of integral matrices. We present a combinatorial interpretation of the multiplicative properties of these polynomials. We also point out the connections with MacMahon's Master Theorem and Schwinger's inner product formula, which is essentially equivalent to MacMahon's Master Theorem. Finally, we give a formula for the double Pfaffian, which is crucial in the studies of the generating function of the 3n-jcoefficients in angular momentum theory. We also review the background of the general polynomials and give some of their properties. © 1998 Academic Press.
CITATION STYLE
Chen, W. Y. C., & Louck, J. D. (1998). The Combinatorics of a Class of Representation Functions. Advances in Mathematics, 140(2), 207–236. https://doi.org/10.1006/aima.1998.1769
Mendeley helps you to discover research relevant for your work.