Nickel-based cermet anode can be operated in hydrogen and hydrocarbon-fuelled intermediate temperature solid oxide fuel cells (SOFCs). Nickel/zirconia co-doped with 10 mol% scandia and 1 mol% ceria (Ni/10Sc1CeSZ) has better electrochemical performance compared with the state-of-the art SOFC anode, Ni/yttria-stabilised-zirconia. In this study, nickel-metal/10 mol% scandia-1 mol% ceria-stabilised zirconia (Ni0.5M0.5/10Sc1CeSZ, M = Co, Cu and Fe) composite anode powders were synthesised via a single-step microwave-assisted glycine nitrate process. The phase identification and morphology of the prepared powder were investigated by X-ray diffraction and field-emission scanning electron microscopy, respectively. The carbon deposition properties of Ni/10Sc1CeSZ and Ni0.5M0.5/10Sc1CeSZ (M = Co, Cu and Fe) cermet anode in dry methane fuel were evaluated. Cermet anode powder was reduced under a mixture of hydrogen (10%) and nitrogen (90%) at 800 °C for 2 h prior to the carbon deposition test. In the carbon deposition test, the reduced cermet powder was exposed in dry methane atmosphere at 800 °C for 3 h. Overall, Ni0.5Cu0.5/10Sc1CeSZ cermet anode exhibits the highest intensity ratio of G/D (2.64) in Raman analysis, resulting in less amorphous carbon deposits. This study shows that copper metal substitution could suppress carbon deposition onto Ni/10Sc1CeSZ cermet, and this material can be used as an anode material for SOFCs that operate on dry methane fuel.
CITATION STYLE
Jais, A. A., Somalu, M. R., Muchtar, A., & Isahak, W. N. R. W. (2019). Carbon Deposition Properties of Ni0.5M0.5/10Sc1CeSZ (M = Cu, Co and Fe) Cermet Anode for Dry Reforming Methane-Fuelled Solid Oxide Fuel Cells. In IOP Conference Series: Earth and Environmental Science (Vol. 268). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/268/1/012138
Mendeley helps you to discover research relevant for your work.