The current research paper deals with the worldwide problem of photovoltaic (PV) power forecasting by this innovative contribution in short-term PV power forecasting time horizon based on classification methods and nonlinear autoregressive with exogenous input (NARX) neural network model. In the meantime, the weather data and PV installation parameters are collected through the data acquisition systems installed beside the three PV systems. At the same time, the PV systems are located in Morocco country, respectively, the 2 kWp PV installation placed at the Higher Normal School of Technical Education (ENSET) in Rabat city, the 3 kWp PV system set at Nouasseur Casablanca city, and the 60 kWp PV installation also based in Rabat city. The multisite modelling approach, meanwhile, is deployed for establishing the flawless short-term PV power forecasting models. As a result, the implementation of different models highlights their achievements in short-term PV power forecasting modelling. Consequently, the comparative study between the benchmarking model and the forecasting methods showed that the forecasting techniques used in this study outperform the smart persistence model not only in terms of normalized root mean square error (nRMSE) and normalized mean absolute error (nMAE) but also in terms of the skill score technique applied to assess the short-term PV power forecasting models.
CITATION STYLE
El Hendouzi, A., Bourouhou, A., & Ansari, O. (2020). The Importance of Distance between Photovoltaic Power Stations for Clear Accuracy of Short-Term Photovoltaic Power Forecasting. Journal of Electrical and Computer Engineering, 2020. https://doi.org/10.1155/2020/9586707
Mendeley helps you to discover research relevant for your work.