Online detection of compensatory strategies in human movement with supervised classification: a pilot study

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Introduction: Stroke survivors often compensate for the loss of motor function in their distal joints by altered use of more proximal joints and body segments. Since this can be detrimental to the rehabilitation process in the long-term, it is imperative that such movements are indicated to the patients and their caregiver. This is a difficult task since compensation strategies are varied and multi-faceted. Recent works that have focused on supervised machine learning methods for compensation detection often require a large training dataset of motions with compensation location annotations for each time-step of the recorded motion. In contrast, this study proposed a novel approach that learned a linear classifier from energy-based features to discriminate between healthy and compensatory movements and identify the compensating joints without the need for dense and explicit annotations. Methods: Six healthy physiotherapists performed five different tasks using healthy movements and acted compensations. The resulting motion capture data was transformed into joint kinematic and dynamic trajectories. Inspired by works in bio-mechanics, energy-based features were extracted from this dataset. Support vector machine (SVM) and logistic regression (LR) algorithms were then applied for detection of compensatory movements. For compensating joint identification, an additional condition enforcing the independence of the feature calculation for each observable degree of freedom was imposed. Results: Using leave-one-out cross validation, low values of mean brier score (<0.15), mis-classification rate (<0.2) and false discovery rate (<0.2) were obtained for both SVM and LR classifiers. These methods were found to outperform deep learning classifiers that did not use energy-based features. Additionally, online classification performance by our methods were also shown to outperform deep learning baselines. Furthermore, qualitative results obtained from the compensation joint identification experiment indicated that the method could successfully identify compensating joints. Discussion: Results from this study indicated that including prior bio-mechanical information in the form of energy based features can improve classification performance even when linear classifiers are used, both for offline and online classification. Furthermore, evaluation compensation joint identification algorithm indicated that it could potentially provide a straightforward and interpretable way of identifying compensating joints, as well as the degree of compensation being performed.

Cite

CITATION STYLE

APA

Das, N., Endo, S., Patel, S., Krewer, C., & Hirche, S. (2023). Online detection of compensatory strategies in human movement with supervised classification: a pilot study. Frontiers in Neurorobotics, 17. https://doi.org/10.3389/fnbot.2023.1155826

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free