Novel fabrication of a yeast biochar-based photothermal-responsive platform for controlled imidacloprid release

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

For improving the utilization efficiency of pesticides, we developed a novel pesticide delivery particle (YINCP@EC) with a core-shell structure based on yeast biochar, imidacloprid (IMI), ammonium bicarbonate (NH4HCO3), calcium alginate (CA), and ethyl cellulose (EC). Therein, yeast biochar, IMI and NH4HCO3were absorbed in the network-structured of CA to obtain YINCP through hydrogen bonds. The resulting composite was granulated using an ion gelation technique and then coated with EC to form YINCP@EC. In this platform, yeast biochar serving as a photothermal agent can efficiently convert sunlight energy into thermal energy, thereby triggering NH4HCO3decomposition into CO2and NH3that can break through the EC coating and facilitate IMI release. In addition, the influence of yeast biochar content, pH, and coexisting ions was systematically studied to evaluate the release behavior of IMI from YINCP@EC. Moreover, the hydrophobic EC shell endowed YINCP@EC with high stability in aqueous solution for at least 60 days. Consequently, this novel composite with simple preparation, low cost and remarkable photothermal-responsive properties has a huge application potential in agriculture.

Cite

CITATION STYLE

APA

Mei, M., Bai, B., Zheng, D., Hu, N., & Wang, H. (2021). Novel fabrication of a yeast biochar-based photothermal-responsive platform for controlled imidacloprid release. RSC Advances, 11(32), 19395–19405. https://doi.org/10.1039/d1ra02143e

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free