Cometary topography and phase darkening

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Aims. Cometary surfaces can change significantly and rapidly as a result of the sublimation of their volatile material. Many authors have investigated this evolution; topographic data from all comets visited by spacecrafts have been used previously to derive a quantitative model that relates large-scale roughness (i.e. topography) with the evolution state of the nucleus for Jupiter-family comets (JFCs). Ground-based observers have published measurements of the phase functions of many JFCs and reported a trend in the phase darkening, with primitive objects showing a stronger darkening than evolved objects. Methods. We used a numerical implementation of this previous topographic description to build virtual comets and measure the phase darkening induced by the different levels of macro-roughness. We then compared our model with other published values. Results. We find that pure geometric effects such as self-shadowing can represent up to 22% of the darkening that is observed for more primitive objects, and 15% for evolved surfaces. This shows that although physical and chemical properties remain the main contributor to the phase darkening, the additional effect of the topography cannot be neglected.

Author supplied keywords

Cite

CITATION STYLE

APA

Vincent, J. B. (2019). Cometary topography and phase darkening. Astronomy and Astrophysics, 624. https://doi.org/10.1051/0004-6361/201834789

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free