The UN 2030 Agenda sets poverty eradication as the primary goal of sustainable development. An accurate measurement of poverty is a critical input to the quality and efficiency of poverty alleviation in rural areas. However, poverty, as a geographical phenomenon, inevitably has a spatial correlation. Neglecting the spatial correlation between areas in poverty measurements will hamper efforts to improve the accuracy of poverty identification and to design policies in truly poor areas. To capture this spatial correlation, this paper proposes a new poverty measurement model based on a neural network, namely, the spatial vector deep neural network (SVDNN), which combines the spatial vector neural network model (SVNN) and the deep neural network (DNN). The SVNN was applied to measure spatial correlation, while the DNN used the SVNN output vector and explanatory variables dataset to measure the multidimensional poverty index (MPI). To determine the optimal spatial correlation structure of SVDNN, this paper compares the model performance of the spatial distance matrix, spatial adjacent matrix and spatial weighted adjacent matrix, selecting the optimal performing spatial distance matrix as the input data set of SVNN. Then, the SVDNN model was used for the MPI measurement of the Yangtze River Economic Belt, after which the results were compared with three baseline models of DNN, the back propagation neural network (BPNN), and artificial neural network (ANN). Experiments demonstrate that the SVDNN model can obtain spatial correlation from the spatial distance dataset between counties and its poverty identification accuracy is better than other baseline models. The spatio-temporal characteristics of MPI measured by SVDNN were also highly consistent with the distribution of urban aggregations and national-level poverty counties in the Yangtze River Economic Belt. The SVDNN model proposed in this paper could effectively improve the accuracy of poverty identification, thus reducing the misallocation of resources in tracking and targeting poverty in developing countries.
CITATION STYLE
Zhou, Q., Chen, N., & Lin, S. (2022). A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China. ISPRS International Journal of Geo-Information, 11(1). https://doi.org/10.3390/ijgi11010050
Mendeley helps you to discover research relevant for your work.